Matrix Metalloproteinase MMP-9 Promotes K/BxN Serum Induced Arthritis in Mice

نویسندگان

  • Narendiran Rajasekaran
  • Harald Illges
چکیده

Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints is unknown. This study is aimed at studying the role of matrix metalloproteinase-9 (MMP-9) in mice, using the K/BxN serum-transfer model of RA. Arthritis was induced in Balb/c mice by injecting K/BxN serum. Development of arthritis was followed in these mice by measuring ankle thickness and clinical index score. MMP-9 expression in the joints of mice killed at various time points during the disease progression was determined by gelatin zymography using ankle lysates. We found that MMP-9 expression increased with the severity of arthritis. Importantly MMP-9 deficient mice injected with K/BxN serum showed a milder form of arthritis in comparison to the control C57BL/6 mice injected with K/BxN serum. We therefore conclude that MMP-9 promotes arthritis in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collagenase-3 (MMP-13) deficiency protects C57BL/6 mice from antibody-induced arthritis

INTRODUCTION Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis. METHODS For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis...

متن کامل

Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model

INTRODUCTION Rheumatoid arthritis is an autoimmune disease in which joint inflammation leads to progressive cartilage and bone erosion. Matrix metalloproteinases (MMPs) implicated in homeostasis of the extracellular matrix play a central role in cartilage degradation. However, the role of specific MMPs in arthritis pathogenesis is largely unknown. The aim of the present study was to investigate...

متن کامل

The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis.

Matrix metalloproteinases (MMPs) are a large group of enzymes responsible for matrix degradation. Among them, the family of gelatinases (MMP-2/gelatinase A and MMP-9/gelatinase B) is overproduced in the joints of patients with rheumatoid arthritis. Because of their degradative effects on the extracellular matrix, gelatinases have been believed to play an important role in progression and cartil...

متن کامل

Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis

OBJECTIVE The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in ...

متن کامل

Heme Oxygenase-1 Regulates the Progression of K/BxN Serum Transfer Arthritis

BACKGROUND Heme oxygenase-1 (HO-1) is induced in many cell types as a defense mechanism against stress. We have investigated the possible role of endogenous HO-1 in the effector phase of arthritis using the K/BxN serum transfer model of arthritis in HO-1 heterozygous and homozygous knock-out mice. METHODOLOGY/PRINCIPAL FINDINGS Arthritis was induced in C57/Black-6 xFVB (HO-1(+/+), HO-1(+/-) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014